
# GaAs MMIC **Power Amplifier**

AM357037WM-00-R AM357037WM-SN-R

> December 2012 Rev0

#### **DESCRIPTION**

AMCOM's AM357037WM is a broadband GaAs MMIC Power Amplifier. It has a nominal CW performance of 26dB small signal gain, and 37dBm (5W) saturated output power over the 3.5 to 7GHz band. The MMIC is offered in both chip (-00-R) and package (-SN-R) forms. The AM357037WM-SN-R is in a ceramic package with a flange and straight RF and DC leads for drop-in assembly. Because of high DC power dissipation, good heat sinking is required, and the chip MMIC has to be mounted using eutectic soldering directly on a metal ridge. Both chip and package are RoHS compliant.





#### **FEATURES**

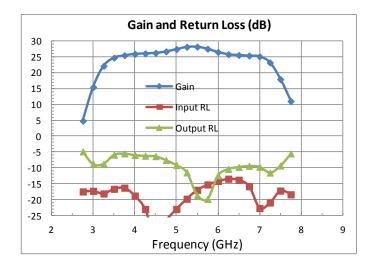
- Wide bandwidth from 3.5 to 7GHz
- 37dBm of saturated CW output power
- High gain, 26dB
- Input /Output matched to 50 Ohms

#### **APPLICATIONS**

- Commercial telecom transmission equipment
- Fixed microwave backhaul
- Commercial 2-way radio

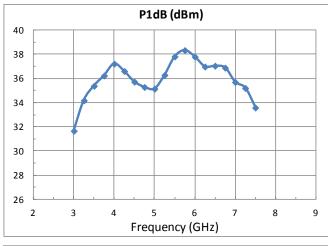
## TYPICAL PERFORMANCE \* ( $V_{ds1,2,3} = 8V$ , $I_{dsa1} = 0.1A$ , $I_{dsa2} = 0.4A$ , $I_{dsa3} = 1.6A$ )

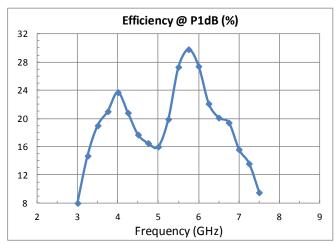
| Parameters                    | Minimum     | Typical **  | Maximum  |
|-------------------------------|-------------|-------------|----------|
| Frequency                     | 4 – 6.5 GHz | 3.5 – 7 GHz |          |
| Small Signal Gain             | 22 dB       | 26 dB       | 30 dB    |
| Gain Ripple                   |             | ± 1 dB      | ± 3.0 dB |
| P <sub>1dB</sub>              | 34 dBm      | 36 dBm      |          |
| $P_{3dB}$                     | 36 dBm      | 37 dBm      |          |
| Efficiency @ P <sub>3dB</sub> |             | 24%         |          |
| Noise Figure                  |             | -           | 10 dB    |
| IP3 @ 5GHz                    |             | TBD         |          |
| Input Return Loss             |             | 15 dB       |          |
| Output Return Loss            |             | 5 dB        |          |
| Thermal Resistance            |             | 3.7 °C/W    |          |

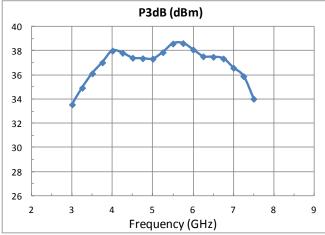

Email:

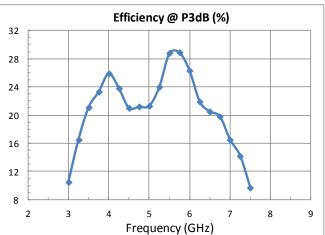
- 1- Specifications are subject to change without notice.
- 2- V<sub>as1,2,3</sub> should be adjusted to -0.85V approximately to get the specified currents, and will vary slightly from one unit to another.
- 3- Measurements are done in CW mode.

## **ABSOLUTE MAXIMUM RATING**


| Parameters                     | Symbol               | Rating          |
|--------------------------------|----------------------|-----------------|
| Drain source voltage           | V <sub>ds1,2,3</sub> | 9V              |
| Gate source voltage            | V <sub>gs1,2,3</sub> | -3V             |
| Drain source current           | I <sub>dsq1</sub>    | 0.125A          |
| Drain source current           | I <sub>dsq2</sub>    | 0.5A            |
| Drain source current           | I <sub>dsq3</sub>    | 2A              |
| Continuous dissipation at 25°C | $P_{t}$              | 30W             |
| Channel temperature            | T <sub>ch</sub>      | 175°C           |
| Operating temperature          | T <sub>op</sub>      | -55°C to +85°C  |
| Storage temperature            | T <sub>sto</sub>     | -55°C to +135°C |


## **SMALL SIGNAL DATA\***





<sup>\*</sup> Data shown is for packaged version (SN-R) of the MMIC biased at  $V_{ds1,2,3} = 8V$ ,  $I_{dsq1} = 0.1A$ ,  $I_{dsq2} = 0.4A$ ,  $I_{dsq3} = 1.6A$ 

## **POWER DATA \***







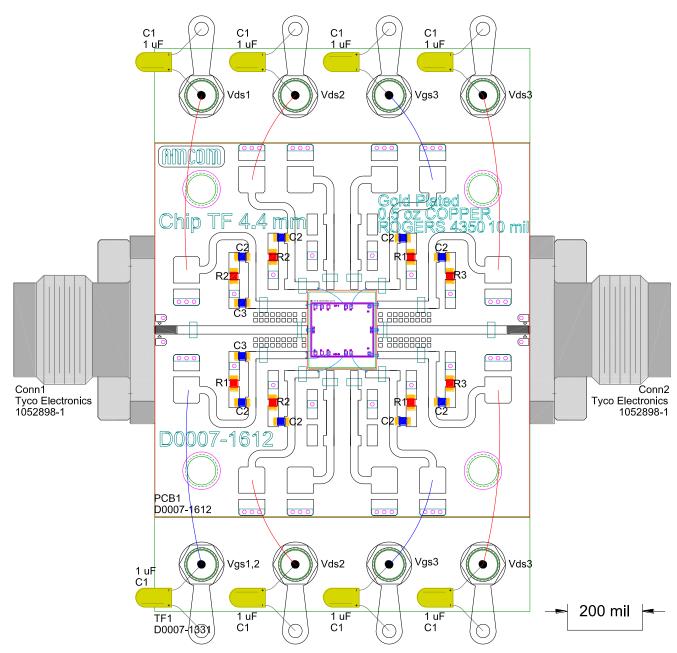


<sup>\*</sup> Data shown is for packaged version (SN-R) of the MMIC biased at  $V_{ds1,2,3} = 8V$ ,  $I_{dsq1} = 0.1A$ ,  $I_{dsq2} = 0.4A$ ,  $I_{dsq3} = 1.6A$ 

#### December 2012, Rev0

## **CHIP OUTLINE**

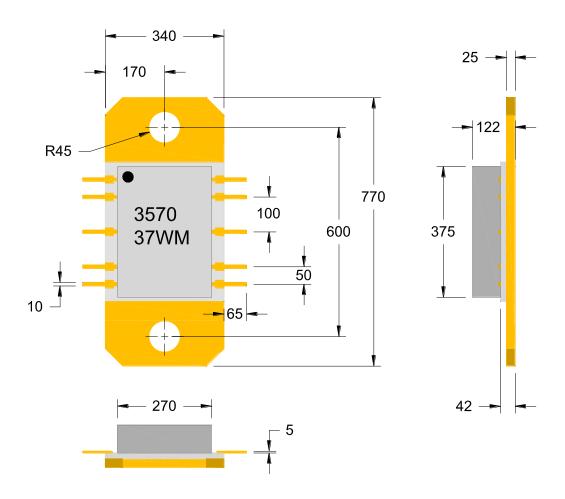
Dim X\*Y: 4200X3600 um^2



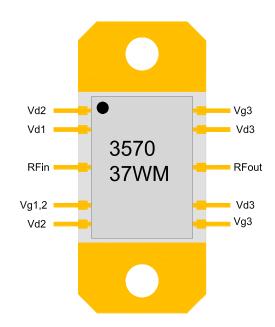

| Pin No. | Function  | Bias   |
|---------|-----------|--------|
| 1       | $V_{gs1}$ | -0.85V |
| 2       | $V_{ds1}$ | +8V    |
| 3       | $V_{gs2}$ | -0.85V |
| 4       | $V_{ds2}$ | +8V    |
| 5       | $V_{gs3}$ | -0.85V |
| 6       | $V_{ds3}$ | +8V    |
| 7       | RF out    | NA     |
| 8       | $V_{ds3}$ | +8V    |
| 9       | $V_{gs3}$ | -0.85V |
| 10      | $V_{ds2}$ | +8V    |
| 11      | $V_{gs2}$ | -0.85V |
| 12      | $V_{ds1}$ | +8V    |
| 13      | $V_{gs1}$ | -0.85V |
| 14      | RF in     | NA     |

#### \*Notes:

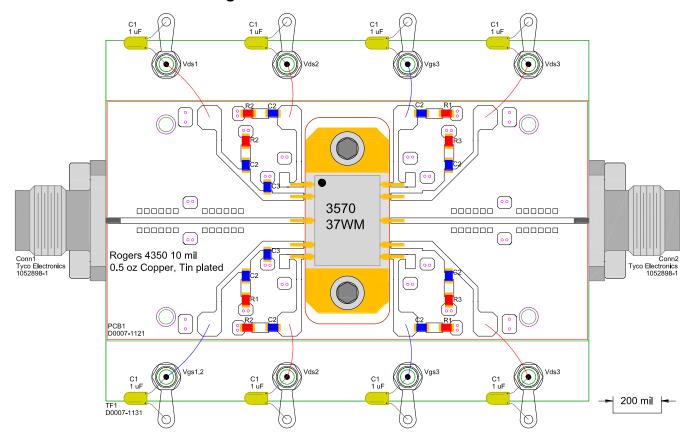
- 1- It is necessary to connect drain biases  $V_{ds1,2,3}$  to both the upper and lower bonding pads.
- 2-  $V_{gs1,2,3}$  bias values are for reference only and will vary slightly from one unit to another.


## **CHIP TEST FIXTURE**




#### Notes:

- 1- Use epoxy to mount PCB, and eutectic soldering to mount chip.
- 2- C1=1uF, C2=1000pF, C3=20pF, R1=50ohms, R2=10ohms, R3=5ohms.
- 3- All SMT Caps & Resistors are 0402 size.
- 4- Don't apply V<sub>ds1,2,3</sub> without proper negative voltages on corresponding gates.


## **SN PACKAGE OUTLINE (Dimensions in mils)**



# **Pin Layout**



## **TEST CIRCUIT for SN Package**



## Notes:

- 1- Use epoxy to mount PCB.
- 2- C1=1uF, C2=1000pF, C3=20pF, R1=50ohms, R2=10ohms, R3=5ohms.
- 3- All SMT Caps & Resistors are 0603 size.
- 4- Don't apply V<sub>ds1,2,3</sub> without proper negative voltages on corresponding gates.